homcert/include/bfv.hpp

172 lines
6.5 KiB
C++

#pragma once
#include <cstddef>
#include <cstdint>
#include <type_traits>
#include <bit>
#include <stdexcept>
#include <string>
#include <array>
#include <memory>
namespace homcert::bfv {
constexpr std::size_t VECSIZE = 8192;
constexpr std::size_t PLAINMOD = 16760833; // 8192*2*1023+1 and prime
template<std::size_t N, typename = void>
struct smallest_uint;
template<std::size_t N>
struct smallest_uint<N, std::enable_if_t<(N <= UINT8_MAX)>> {
using type = std::uint8_t;
};
template<std::size_t N>
struct smallest_uint<N, std::enable_if_t<(UINT8_MAX < N && N <= UINT16_MAX)>> {
using type = std::uint16_t;
};
template<std::size_t N>
struct smallest_uint<N, std::enable_if_t<(UINT16_MAX < N && N <= UINT32_MAX)>> {
using type = std::uint32_t;
};
template<std::size_t N>
struct smallest_uint<N, std::enable_if_t<(UINT32_MAX < N)>> {
using type = std::uint64_t;
};
struct plaintext {
using coefficient = typename smallest_uint<PLAINMOD>::type;
std::array<coefficient, VECSIZE> coefficients;
// Arithmetic...
};
using ciphertext = int;
// Exception for BFV errors in context
class bfv_exception : public std::exception {
public:
enum class REASON {
CTX_INVALID,
CTX_NOT_IMPLEMENTED,
CTX_NO_PRIVATE,
CTX_NO_PUBLIC,
CTX_ARITHMETIC,
CTX_MEMORY,
CTX_INVALID_ARGUMENT,
CTX_COMPONENT,
CTX_INTERNAL
};
private:
REASON m_reason;
std::string m_message;
public:
bfv_exception(REASON reason, std::string message);
REASON reason() const noexcept;
const char* what() const noexcept override;
};
// Inheriting from context class allows pluggability of implementations (e.g. SEAL vs. GPU)
struct context {
static constexpr int PUBLIC_COMPONENT = 1;
static constexpr int PRIVATE_COMPONENT = 2;
context(const context& other) = delete;
context(context&& other) = delete;
context& operator=(const context& other) = delete;
context& operator=(context&& other) = delete;
context() = default;
virtual ~context() = default;
virtual void new_components() = 0; // context default constructs empty
virtual void has_components(int& components) const = 0;
virtual void clone_components(int components, std::shared_ptr<context>& ptr) const = 0;
// virtual void dump_components(int components, void* buf, std::size_t& n) const = 0;
// virtual void load_components(int components, const void* buf, std::size_t n) = 0;
virtual void allocate(ciphertext& ct) = 0;
virtual void free(ciphertext ct) = 0;
virtual void serialize(ciphertext ct, void* buf, std::size_t& n) const = 0;
virtual void deserialize(ciphertext ct, const void* buf, std::size_t n) const = 0;
virtual void encrypt(const plaintext& pt, ciphertext ct) const = 0;
virtual void decrypt(ciphertext ct, plaintext& pt) const = 0; // private
virtual void add_cipher_plain(ciphertext a, const plaintext& b, ciphertext res) const = 0;
virtual void add_cipher_cipher(ciphertext a, ciphertext b, ciphertext res) const = 0;
virtual void sub_cipher_plain(ciphertext a, const plaintext& b, ciphertext res) const = 0;
virtual void sub_cipher_cipher(ciphertext a, ciphertext b, ciphertext res) const = 0;
virtual void mul_cipher_plain(ciphertext a, const plaintext& b, ciphertext res) const = 0;
virtual void mul_cipher_cipher(ciphertext a, ciphertext b, ciphertext res) const = 0;
virtual void rot_cipher_rows(ciphertext ct, int r, ciphertext res) const = 0;
virtual void swap_cipher_rows(ciphertext ct, ciphertext res) const = 0;
virtual void noise_budget(ciphertext ct, std::size_t& budget) const = 0; // private
};
/*
NOTE -> Implementations may defer operations or not wait for them to finish
For example, GPU implementations may dispatch multiplications when they arive
Additionally, a graph of running operations is maintained to handle data dependencies
Only when data is required to actually be present (e.g. decrypt), does the implementation wait
*/
// BFV implementation using Microsoft SEAL
struct seal_context : public context {
seal_context();
~seal_context();
void new_components() override;
void has_components(int& components) const override;
void clone_components(int components, std::shared_ptr<context>& ptr) const override;
void allocate(ciphertext& ct) override;
void free(ciphertext ct) override;
void serialize(ciphertext ct, void* buf, std::size_t& n) const override;
void deserialize(ciphertext ct, const void* buf, std::size_t n) const override;
void encrypt(const plaintext& pt, ciphertext ct) const override;
void decrypt(ciphertext ct, plaintext& pt) const override;
void add_cipher_plain(ciphertext a, const plaintext& b, ciphertext res) const override;
void add_cipher_cipher(ciphertext a, ciphertext b, ciphertext res) const override;
void sub_cipher_plain(ciphertext a, const plaintext& b, ciphertext res) const override;
void sub_cipher_cipher(ciphertext a, ciphertext b, ciphertext res) const override;
void mul_cipher_plain(ciphertext a, const plaintext& b, ciphertext res) const override;
void mul_cipher_cipher(ciphertext a, ciphertext b, ciphertext res) const override;
void rot_cipher_rows(ciphertext ct, int r, ciphertext res) const override;
void swap_cipher_rows(ciphertext ct, ciphertext res) const override;
void noise_budget(ciphertext ct, std::size_t& budget) const override;
private:
int m_id;
};
/*
activate_context(std::shared_ptr<bfv::context> ctx) -> thread local pointer is set
Raw ciphertext and plaintext classes always have the full 8192 coefficients (defined in context as static constexpr)
bfv::vector<...>
-> can be plaintext or ciphertext
-> can be base (owns plain-/ciphertext) or component (view to part of base)
-> can be local or remote
-> can be a single vector or multiple vectors/components (variadic)
-> arithmetic with component masks it out
-> arithmetic with base does operation on all components
-> tracks multiplicative depth
-> warning/error if multiplicative depth exceeds limit
-> use bootstrap member function to handle the warnings/errors
-> callbacks to reach peer in context
-> bootstrap_client (unchecked, just raw bootstrap, checks happen at an upper layer using other callbacks)
-> bootstrap_server_await (waits for client to make request)
-> bootstrap_server_serve (called immediately after request received with value to be returned)
-> automatically does secure reveal when cipher is transformed to plain
-> queues operations until used (cast to plaintext, communication with peer)
Programs are defined TWICE
-> local stuff is executed
-> remote stuff is hosted (e.g. bootstrapping server)
-> defined once from each side (differ e.g. in the plaintext inputs etc.)
-> program base class may be used to handle context setting
*/
}